

GOSFORD HIGH SCHOOL 2008 HIGHER SCHOOL CERTIFICATE MATHEMATICS ASSESSMENT TASK #1 DECEMBER 2007

Time Allowed – 70 minutes

All necessary working should be shown.

Full marks may not be awarded for unnecessarily untidy work or work that is poorly organized.

Students must begin each new question on a new page.

Students need to place their name and/or HSC candidate number at the top of each new page.

Questions will be collected separately at the conclusion of the assessment task.

All questions are to be attempted.

Question 1 (12 marks)

(a) Find
$$\frac{d}{dx} \left[x^3 - 4x^2 + 12 \right]$$
 (1)

(b) Find
$$\lim_{x\to 0} \left[\frac{x}{x^2 - 2x} \right]$$
 (2)

- (c) Write a quadratic equation whose roots are $1 \pm \sqrt{3}$. (2)
- (d) A population (P) is increasing but at a decreasing rate.

 Describe the signs of $\frac{dP}{dt}$ and $\frac{d^2P}{dt^2}$ where t is time. (2)
- (e) Find the equation of the locus of a point P(x, y) which moves so that it is equidistant from the point (0,6) and the line y = -6. (1)
- (f) Find the primitive function of $4x^3 6x^2 + x$. (2)
- (g) It is given that a stationary point occurs at x = 0 on a continuous curve with $f''(x) = x^2(x-2)(x-4)$. Determine the nature of the stationary point at x = 0. (2)

Question 2 (12 marks)

(a) Find
$$f'(x)$$
 if $f(x) = x\sqrt{x} - \frac{3}{x^2}$ (3)

(b) Find
$$\frac{dy}{dx}$$
 if $y = \frac{2x-1}{x^2+1}$ (3)

(c) If α and β are the roots of the quadratic equation $2x^2 - 6x + 7$

(i) find the value of
$$\alpha + \beta$$
 (1)

(ii) find the value of
$$\alpha\beta$$
 (1)

(iii) find the value of
$$(\alpha - \beta)^2$$
 (2)

(iv) Are the roots of the equation Real or Unreal? Explain your answer. (2)

juestion 3 (12 marks)

- a) Find the coordinates of the focus of the parabola with equation $(x-4)^2 = 16(y+6)$ (2)

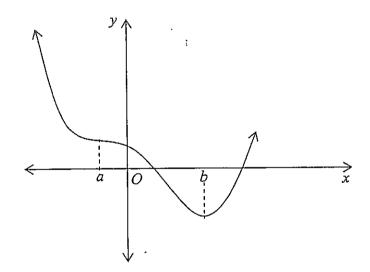
(2)

- b) Find the centre and radius of a circle with equation $x^2 + y^2 8x = 0$. (2)
- Write down the equation of the parabola with axis the x axis and vertex the origin and passing through the point (-2, 6). (2)
- d) Find the constants k and g such that $x^2 + 10x + 10 \equiv k(x+2)^2 + g(x+1)$. (3)
- e) For what values of m are the roots of the equation $x^2 + 2mx + 2(m+12) = 0$ real? (3)

Question 4 (12 marks)

a) The graph below represents the function y = f(x).

Using the provided enlarged copy of this diagram, on the same set of axes graph the gradient function y = f'(x)



- (b) Find the equation of the curve with gradient function $(1+2x)^3$ if the curve passes through the point $(\frac{1}{2},0)$.
- (c) Find the equation of the tangent to the parabola $y = x^2 3x 4$ at the point on the parabola where the tangent is parallel to the line y = 2 x. (4)
- (d) A and B are the points (-3, 0) and (3, 0) respectively. Find the equation of the locus of the point P(x,y) which moves such PA = 2PB (3)

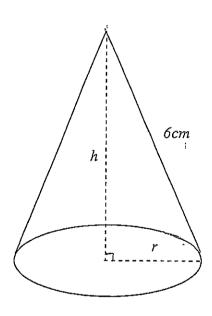
Question 5 (12 marks)

- (a) (i) Find the stationary points on the curve $y = 2x^3 3x^2 12x$ and determine their nature. (4)
 - (ii) Sketch the curve in the domain $-2 \le x \le 3$ indicating on your sketch the x and y intercepts and all critical points. (do not attempt to find any points of inflexion) (3)
- (b) The slant edge of a right circular cone is 6cm in length.

The volume(V) of a cone is given by the formula $V = \frac{1}{3}\pi r^2 h$

(i) Show that for the given cone below
$$V = 12\pi h - \frac{\pi h^3}{3}$$
. (2)

(i) Hence, or otherwise, find the height of the cone when the volume is a maximum. (3)



a)
$$\frac{d}{dx} \left(x^3 - 4x^2 + 12 \right) = 3x^2 - 8x$$

b)
$$\lim_{\chi \to 0} \left[\frac{x}{x^2 - 2\chi} \right] = \lim_{\chi \to 0} \left[\frac{1}{12 - 2} \right]$$

c)
$$\alpha = 1 + \sqrt{3}$$
 $\beta = 1 - \sqrt{3}$
 $\alpha + \beta = 2$ $\alpha \beta = -2$
 $\alpha = -2$

d)
$$\frac{dP}{dt} > 0$$
 $\frac{d^2P}{dt^2} < 0$

f)
$$\int (4x^3 - 6x^2 + x) dx = x^4 - 2x^3 + \frac{x^2}{2} + c$$
 a)

: No change in concavity

: Minstpt at x = 0.

$$\frac{Q_2}{(x)} = \frac{3}{x} + \frac{3}{x^2}$$

$$= \frac{3}{2} - 3x^{-2}$$

$$f'(x) = \frac{3}{2} x''^2 + 6x^{-3}$$

$$\frac{dy}{dx} = \frac{2x^2 + 1}{x^2 + 1}$$

$$\frac{dy}{dx} = \frac{(x^2 + 1)^2 - (2x - 1)^2 x}{(x^2 + 1)^2}$$

$$= -2x^2 + 2x + 2$$

(i)
$$\alpha + \beta = 3$$

$$(ii) \quad \alpha \beta = 3\frac{1}{2}$$

iii)
$$(\alpha - \beta)^2 = \alpha^2 - 2\kappa\beta + \beta^2$$

$$= (\alpha + \beta)^2 - 4 \times \beta$$

$$= 9 - 14$$

$$= -5$$

10) Roots unreal since (α-β)240

$$\frac{Q3}{a)} \frac{(3-4)^2 = 16(x+6)}{\sqrt{(4,-6)}} = 0$$

b)
$$x^{2}+y^{2}-8x=0$$

 $(x-4)^{2}+y^{2}=16$
Centre (4,0)
 $tadus=4$.

$$\frac{y^{2} - 4ax}{(2,6) \quad 36 = 8m}$$

$$\frac{m = 4^{1/2}}{y^{2} = -18x}$$

$$y = 222^3 - 32^2 - 122$$

$$y' = 6x^{2} - 6x$$

= $6x(x-1)$

$$y'' = 12x - 6$$

= -6 at (0,0)
= 6 at (1,-14)

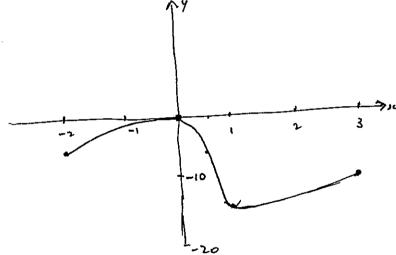
when
$$x = 3$$
 $y = 54 - 27 - 36$ $= -9$

Inflexion pts occur when
$$y''=0$$

i.e. $x=\frac{1}{2}$ $y=-6^2$

: change in concavity at
$$(\frac{1}{2}, -6\frac{1}{2})$$

$$\vec{u}$$



(b)
$$k^2 + \gamma^2 = 36$$

 $\gamma = \sqrt{36 - k^2}$

$$= \frac{12\pi L - \pi L^3}{3}$$

$$\frac{dV}{h} = 12\pi - \pi h^{2}$$

$$\frac{d^2V}{dA^2} = -2\pi h$$